Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metglas-Elgiloy bi-layer, stent cell resonators for wireless monitoring of viscosity and mass loading

Identifieur interne : 000908 ( Main/Repository ); précédent : 000907; suivant : 000909

Metglas-Elgiloy bi-layer, stent cell resonators for wireless monitoring of viscosity and mass loading

Auteurs : RBID : Pascal:13-0101544

Descripteurs français

English descriptors

Abstract

This paper presents the design and evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors are fabricated from 28 μm thick foils of magnetoelastic 2826MB Metglas>, an amorphous Ni-Fe alloy. The sensor layer consists of a frame and an active resonator portion. The frame consists of 150 μm wide struts that are patterned in the same wishbone array pattern as a 12 mm x 1.46 mm Elgiloy stent cell. The active portion is a 10 mm long symmetric leaf shape and is anchored to the frame at mid length. The active portion nests within the stent cell, with a uniform gap separating the two. A gold-indium eutectic bonding process is used to bond Metglas> and Elgiloy foils, which are subsequently patterned to form bi-layer resonators. The response of the sensor to viscosity changes and mass loading that precede and accompany artery occlusion is tested in vitro. The typical sensitivity to viscosity of the fundamental, longitudinal resonant frequency at 361 kHz is 427 ppm cP-1 over a 1.1-8.6 cP range. The sensitivity to mass loading is typically between 63000 and 65000 ppm mg-1 with the resonant frequency showing a reduction of 8.1% for an applied mass that is 15% of the unloaded mass of the sensor. This is in good agreement with the theoretical response.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0101544

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Metglas-Elgiloy bi-layer, stent cell resonators for wireless monitoring of viscosity and mass loading</title>
<author>
<name sortKey="Viswanath, Anupam" uniqKey="Viswanath A">Anupam Viswanath</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science and Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan</s1>
<s2>Ann Arbor, MI</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Ann Arbor, MI</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Green, Scott R" uniqKey="Green S">Scott R. Green</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science and Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan</s1>
<s2>Ann Arbor, MI</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Ann Arbor, MI</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kosel, J Rgen" uniqKey="Kosel J">J Rgen Kosel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST</s1>
<s2>Thuwal 23955</s2>
<s3>SAU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Thuwal 23955</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gianchandani, Yogesh B" uniqKey="Gianchandani Y">Yogesh B. Gianchandani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science and Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan</s1>
<s2>Ann Arbor, MI</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Ann Arbor, MI</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0101544</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0101544 INIST</idno>
<idno type="RBID">Pascal:13-0101544</idno>
<idno type="wicri:Area/Main/Corpus">001196</idno>
<idno type="wicri:Area/Main/Repository">000908</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0960-1317</idno>
<title level="j" type="abbreviated">J. micromech. microeng. : (Print)</title>
<title level="j" type="main">Journal of micromechanics and microengineering : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active system</term>
<term>Amorphous alloy</term>
<term>Fabrication</term>
<term>Finite element method</term>
<term>Iron alloys</term>
<term>Magnetic properties</term>
<term>Magnetic sensors</term>
<term>Magnetoelastic effects</term>
<term>Mass sensor</term>
<term>Monitoring</term>
<term>Nickel alloys</term>
<term>Resonance frequency</term>
<term>Resonators</term>
<term>Sensitivity</term>
<term>Stent</term>
<term>Viscosity</term>
<term>Wireless network</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Résonateur</term>
<term>Monitorage</term>
<term>Viscosité</term>
<term>Effet magnétoélastique</term>
<term>Méthode élément fini</term>
<term>Propriété magnétique</term>
<term>Fréquence résonance</term>
<term>Capteur magnétique</term>
<term>Stent</term>
<term>Fabrication</term>
<term>Sensibilité</term>
<term>Réseau sans fil</term>
<term>Capteur masse</term>
<term>Alliage amorphe</term>
<term>Nickel alliage</term>
<term>Fer alliage</term>
<term>Système actif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents the design and evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors are fabricated from 28 μm thick foils of magnetoelastic 2826MB Metglas
<sup></sup>
>, an amorphous Ni-Fe alloy. The sensor layer consists of a frame and an active resonator portion. The frame consists of 150 μm wide struts that are patterned in the same wishbone array pattern as a 12 mm x 1.46 mm Elgiloy stent cell. The active portion is a 10 mm long symmetric leaf shape and is anchored to the frame at mid length. The active portion nests within the stent cell, with a uniform gap separating the two. A gold-indium eutectic bonding process is used to bond Metglas
<sup></sup>
> and Elgiloy foils, which are subsequently patterned to form bi-layer resonators. The response of the sensor to viscosity changes and mass loading that precede and accompany artery occlusion is tested in vitro. The typical sensitivity to viscosity of the fundamental, longitudinal resonant frequency at 361 kHz is 427 ppm cP
<sup>-1</sup>
over a 1.1-8.6 cP range. The sensitivity to mass loading is typically between 63000 and 65000 ppm mg
<sup>-1</sup>
with the resonant frequency showing a reduction of 8.1% for an applied mass that is 15% of the unloaded mass of the sensor. This is in good agreement with the theoretical response.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0960-1317</s0>
</fA01>
<fA03 i2="1">
<s0>J. micromech. microeng. : (Print)</s0>
</fA03>
<fA05>
<s2>23</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Metglas-Elgiloy bi-layer, stent cell resonators for wireless monitoring of viscosity and mass loading</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VISWANATH (Anupam)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GREEN (Scott R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KOSEL (Jürgen)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GIANCHANDANI (Yogesh B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science and Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan</s1>
<s2>Ann Arbor, MI</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST</s1>
<s2>Thuwal 23955</s2>
<s3>SAU</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>025010.1-025010.9</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22483</s2>
<s5>354000182536830100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0101544</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of micromechanics and microengineering : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper presents the design and evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors are fabricated from 28 μm thick foils of magnetoelastic 2826MB Metglas
<sup></sup>
>, an amorphous Ni-Fe alloy. The sensor layer consists of a frame and an active resonator portion. The frame consists of 150 μm wide struts that are patterned in the same wishbone array pattern as a 12 mm x 1.46 mm Elgiloy stent cell. The active portion is a 10 mm long symmetric leaf shape and is anchored to the frame at mid length. The active portion nests within the stent cell, with a uniform gap separating the two. A gold-indium eutectic bonding process is used to bond Metglas
<sup></sup>
> and Elgiloy foils, which are subsequently patterned to form bi-layer resonators. The response of the sensor to viscosity changes and mass loading that precede and accompany artery occlusion is tested in vitro. The typical sensitivity to viscosity of the fundamental, longitudinal resonant frequency at 361 kHz is 427 ppm cP
<sup>-1</sup>
over a 1.1-8.6 cP range. The sensitivity to mass loading is typically between 63000 and 65000 ppm mg
<sup>-1</sup>
with the resonant frequency showing a reduction of 8.1% for an applied mass that is 15% of the unloaded mass of the sensor. This is in good agreement with the theoretical response.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B26E</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Résonateur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Resonators</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Monitorage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Monitoring</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Monitoreo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Viscosité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Viscosity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Effet magnétoélastique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Magnetoelastic effects</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Méthode élément fini</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Finite element method</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Propriété magnétique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Magnetic properties</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Fréquence résonance</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Resonance frequency</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Frecuencia resonancia</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Capteur magnétique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Magnetic sensors</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Stent</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Stent</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Stent</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Fabrication</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Fabrication</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Sensibilité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Sensitivity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Réseau sans fil</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Wireless network</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Red sin hilo</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Capteur masse</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Mass sensor</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Sensor masa</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Alliage amorphe</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Amorphous alloy</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Aleación amorfa</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Nickel alliage</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Nickel alloys</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Fer alliage</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Iron alloys</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Système actif</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Active system</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Sistema activo</s0>
<s5>20</s5>
</fC03>
<fN21>
<s1>077</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000908 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000908 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0101544
   |texte=   Metglas-Elgiloy bi-layer, stent cell resonators for wireless monitoring of viscosity and mass loading
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024